

Project Report: MIDI Slide
Violet Blitz, in a group with Matthew Dacey, Natalie Nicoletti, and William

Xia

Dec 17, 2024

Introduction

 The MIDI Slide was designed to be an intuitive, portable, and ambidextrous electronic
interpretation of a lap steel. With one hand choosing notes (akin to fingering strings) and the
other triggering them (akin to plucking or bowing strings), the interface will be familiar to users
with any passing knowledge of string instruments, even if they’ve never encountered a lap steel
before. The instrument features five tuning modes inspired by different instruments so it’s
especially adaptable, emulating a lap steel, guitar, bass, cello, viola, or violin tuning. By being a
MIDI instrument, the MIDI Slide can give players access to various sounds and effects that
would otherwise require an expensive lap steel and multiple effects pedals. Finally, the
instrument features a “tapping mode” for one-handed play, allowing it to easily be used in
addition to other instruments.
 The core feature of the MIDI Slide is the sliding itself: four softpots affixed to the main
body of the instrument allow players to seamlessly slide between notes, reproducing the laid-
back glissandi of the lap steel or the bluesy bends of an electric guitar. Each softpot can bend its
pitch independently, putting the instrument in the MPE category alongside the ROLI Seaboard
and the Linnstrument. While simpler than those instruments, the MIDI Slide has the advantage of
not needing the player’s hands to jump around the keyboard. Four softpots and four buttons fit
easily under the player’s fingers, allowing expressive play without difficult leaps–and the new
wireless design allows the off-hand a greater freedom of movement.

Instrument Layout

 The instrument is comprised of two unconnected components. The first, called the pad,
can be placed on a tabletop, a lap, or attached by a strap around the player’s neck or waist. The
pad features four softpot variable resistors, meant for use by the player’s pointer to pinky fingers,
as well as four dials and two buttons that are used to change the instrument’s tuning and volume
between songs. While the knobs determine the “root note” of each of the four “strings”, the
softpots are used to control the pitch bend along the range of an octave to modulate the pitch of
each string. The softpots are intersected by etched lines that clearly show where to press to hear
each half step (12 in total) along the string.

The second component is the handheld controller, which attaches by a strap to the
player’s other hand. The components are both designed such that they can be used
ambidexterously by whichever hand the player prefers. The handheld controller has four force-
sensing resistors, meant for use by the player’s pointer to pinky fingers, and a joystick positioned
under the thumb. The force-sensing resistors are used to trigger notes in plucking mode and
control note volume in both modes, while the joystick can be clicked to switch between plucking
and tapping mode or flicked to toggle on or off four effects: chorus, phaser, overdrive, and
reverb. Additionally, an accelerometer hidden within the handheld controller reads the angle it’s
held at and uses that information to affect the sound: the controller’s pitch is tremolo amount,
yaw is tremolo speed, and roll is filter frequency. By pressing buttons, changing angles, and
flicking a joystick, the off-hand still has an incredible amount of musical control.
 Electronic components, including an Arduino microcontroller, are hidden within the two
components, out of sight from the player. The pad contains an Arduino Mega and an ESP 32-S3,
while the handheld controller has an Arduino Nano.

Playing the Instrument

 The instrument features two different playing modes: plucking mode and tapping mode,
which can be switched by pressing the joystick on the handheld controller. While they change
the instrument significantly, the tuning dials, volume dial, octave buttons, joystick controls, and
accelerometer controls work the same in both modes.
 The MIDI Slide features two tuning dials and two octave buttons, allowing players to
choose what register, key, and tuning pattern the instrument is in. These affect the “root note” of
each softpot, meaning the note they sound when the softpot is at “0”, either untouched or touched
at the very bottom. The softpots can then be used, regardless of which mode they’re in, to bend
the pitch of that root note up to an octave above.

The octave buttons are self-explanatory, changing the octave of the “root note” of each
softpot. When both octave buttons are pressed at once, however, the synthesized sound of the
instruments changes, rotating between a lap steel sound, cello sound, and extraterrestrial synth
pad sound. The root note dial determines the pitch class of the leftmost softpot’s root note. In
conjunction, the octave buttons and root note dial mean the leftmost softpot’s root note could be
anything from C2 to B6. Then, the tuning mode dial determines the root notes of the other three
softpots, based on the first. “Open”, “6”, and “7” are all conventional lap steel tunings. These
three tunings all tune the second and third strings the same: the second is a major third above the
first, while the third is a perfect fifth above the first. The only difference is the rightmost softpot,
being an octave above the first in Open, a major sixth above in 6, or a minor seventh above in 7.
“4ths” and “5ths” are unconventional for lap steels, but are based on other instruments. In 4ths,
each softpot is a perfect fourth apart, as in a guitar, electric bass, or double bass. In 5ths, softpots
are a perfect fifth apart, as in a cello, viola, or violin. Users can easily choose whichever tuning
makes the most sense for them or for the piece they’re playing by simply turning a couple of
dials.

The Auto Tuning knob affects the behavior of the softpots: turning the knob toward
“Smooth” creates a smoother glissando between notes, while going toward “Half Steps” makes it
easier to play notes in tune.

The volume knob controls the overall volume of the instrument. It’s generally meant to
be set once and not adjusted while playing, but can certainly be adjusted mid-song if necessary.

The joystick is used to switch between modes and turn on or off four effects. Pressing
down on the joystick will toggle between plucking (default) and tapping mode. Flicking the
joystick left toggles the chorus effect, right toggles the phaser effect, down toggles the overdrive
effect, and up toggles the reverb effect.

In both modes, pressing the FSRs on the handheld controller hard enough will activate an
aftertouch effect, increasing the volume of both oscillators on the corresponding channel. The
FSR values also determine the brightness of four LEDS on the pad, so there’s visual feedback for
the FSRs.

Now to the two modes. In plucking mode, the FSRs are used to trigger notes and
determine their velocity. A slow press will result in a slow-attack note with a low velocity and a
fast press will result in an instant-attack note with a high velocity. The notes will be held for as
long as the FSR is held down, meaning that they also act as sustain controls. While one hand
controls the FSRs, the other uses the softpots to change the pitch bend of the notes - each softpot
and FSR are assigned to a channel, so the leftmost softpot controls the pitch of the notes
triggered by the topmost FSR, and so on.

In tapping mode, the FSRs only act as aftertouch, as described above. Touching a softpot
will both change the pitch bend and trigger a note, always with maximum velocity and instant
attack. The note will continue to sound until the softpot is released, then it will pitch bend back
to the softpot’s root note, and quickly fade out.

Instrument Construction

Physical Construction

 The main pad of the instrument has one side made from a sheet of 3 mm black acrylic
and its other five sides are 3 mm birch wood. All six were cut using a laser cutter, and the top
acrylic sheet also had lines and labels laser-etched onto its surface. The wood sides are held
together with wood glue while, for the prototype at least, the acrylic is simply held in place by
finger joints. This allows the acrylic to be easily removed to access the electronic components
housed within the box. Holes cut into the wood act as exit points for wires on the back face. The
knobs are secured to the acrylic by a nut that holds the acrylic against the wider body of the
knob, while the octave buttons are simply secured by gravity and the softpots are secured by an
adhesive on the back of each. The wood was painted black to better match the acrylic top and
3D-printed components. Additionally, the entire pad was made smaller in our second iteration to
be more comfortable for the player.

 The handheld controller, 3D printed using black PLA, was printed in three parts, later
fastened together with bolts and nuts, to have a large, accessible internal cavity to fix wires and
components into. This second iteration is much larger, accommodating the Arduino Nano, 9V
Battery, and power switch that was added for wireless communication. The battery holder,
joystick, and accelerometer are hot-glued into the controller, while the circuit board is secured by
light pressure on its sides, and the FSRs are secured by adhesives.

Figure 1: Tuning Labeling on the Main Pad

Parts List

Part Quantity Link

3 mm black
acrylic

3 mm birch wood

Black PLA for 3D
printing

Varied bolts and
nuts for fastening

Soft pot 4 https://www.digikey.com/en/products/detail/spectra-
symbol/tsp-l-0300-103-3-st/17050959

Rotating pot 4 https://www.adafruit.com/product/562

Knob 4 https://www.adafruit.com/product/2058

Button 1 (pack
of 4)

https://www.digikey.ca/en/products/detail/sparkfun-
electronics/PRT-14460/7915747

FSR 4 https://www.adafruit.com/product/166

Accelerometer 1 https://www.adafruit.com/product/3886

Joystick 1 https://www.adafruit.com/product/512

Elastic band 1 https://www.amazon.com/Elastic-Black-Heavy-Stretch-
Elasticity/dp/B071G3J5QG/ref=sr_1_6?dib=eyJ2IjoiMSJ9.Uz
OLpL5VnchJA0OfhSlHzjVzHgHov7frPtV-
W65VGIXNbLNt_sgI5Hprwb1NC5g2djU9mXTZjAByZT10
QFNz9NGqRE-
dK89IMcCGhM8aXmVfx6JGvBkdEU01S4EwxlpvvUxWH
AI96x7Ilar5eDWn0RJLOG38Ft7KwuA1-
8qwdtDszHajvhj7jHAoOfIQnYFLI3m0DgN9K2L0-
Ws2B6eqdiVgryvPShkPen02pxDLoSL9iLkXQcRHb7n63pT
w4untY13HXwgfSao5xifu-
RwGjaR7FS0sIOooraVmrjNpC8U.vnFhVb474kiohFfrC9hks
qGp3JTcqg9d2MlfmREzGp4&dib_tag=se&keywords=heavy
%2Bduty%2Belastic%2Bband&qid=1728860066&sr=8-
6&th=1=

Guitar strap 1 https://www.amazon.com/Ernie-Ball-Black-Polypro-
Guitar/dp/B0002D0E92/ref=sr_1_1?crid=1X9KGI5FJEVDR
&dib=eyJ2IjoiMSJ9.si-
xNzyUrbH2cySvY36gPVuAodO_GAIjr689t2L3FK4W0Wm
_-MDUxHXafTUzljWMBYPLGWk8F0982syeTIJZ8-
jHls6rETz8bRaSKdCST-
BqAqGkhkB6L8CBIXR5cdUF8ZqoBjDWHF6wEQaJcBiq1
RK1iKceKVTYGU5ufm7zsV_gjZdUvWw65AbELAjyNw0lf
-
euKxxSj6yTXvUjHePupnhIAaIHy7Ufo42T8cUdIPiHtOoWh
UL0z9NZIX-
2qqOAI5FeVysbiSKfxCvLhcws6IgrmMmj9ZkG0x-
ciKFQlCQ.EQ1zWCfP5BKhZsyeidyRSkxeZIbFzurM8q8Xk
70kI7Y&dib_tag=se&keywords=ernie+ball+black+guitar+str

ap&qid=1731515280&sprefix=ernie+ball+black+gu%2Caps
%2C168&sr=8-1

Guitar Strap
holder- silver

1 (pack
of 4)

https://www.amazon.com/Giantree-Security-Mounting-
Acoustic-Electric/dp/B0DCNCLVBR

On switch 1 of each https://www.adafruit.com/product/1443?gad_source=1&gclid
=CjwKCAiAudG5BhAREiwAWMlSjNDyBAZ3cNBjZnExu
8rtNBTBt6m_9kz8heWABNdFpMf0FT_fVn2-
KBoCuQ8QAvD_BwE
AND
https://www.digikey.com/en/products/detail/e-
switch/RR511D1121/2116256

Battery holder 1 https://www.digikey.com/en/products/detail/bud-
industries/HH-
3634/3681242?utm_adgroup=&utm_source=google&utm_me
dium=cpc&utm_campaign=PMax%20Shopping_Product_Lo
w%20ROAS%20Categories&utm_term=&utm_content=&ut
m_id=go_cmp-20243063506_adg-_ad-__dev-c_ext-_prd-
3681242_sig-
CjwKCAiA3Na5BhAZEiwAzrfagOdKg5HhH9TtDOIYPGcf
1sbCOC3R5pG71NUKlGLCyOKkXeP2x39sERoCc30QAvD
_BwE&gad_source=1&gclid=CjwKCAiA3Na5BhAZEiwAzr
fagOdKg5HhH9TtDOIYPGcf1sbCOC3R5pG71NUKlGLCy
OKkXeP2x39sERoCc30QAvD_BwE

Arduino Nano 1 https://www.amazon.com/Arduino-ABX00083-Bluetooth-
MicroPython-
Compatible/dp/B0C947BHK5/ref=asc_df_B0C947BHK5?mc
id=5a30f294e1e6319b9f1c315bf04bf5e6&tag=hyprod-
20&linkCode=df0&hvadid=693535620612&hvpos=&hvnetw
=g&hvrand=12973110678850364259&hvpone=&hvptwo=&
hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=90020
12&hvtargid=pla-2187047704270&psc=1

ESP 32 1 https://www.espressif.com/en/products/socs/esp32-s3

Circuitry
 Inside the pad, each sensor except the octave buttons is wired to have +5V power and
ground from the Arduino Mega and to send analog or digital signals back to the Arduino through
its output pin. The softpots are also connected to ground with pull-down resistors, so they default
to an output of 0 when not being pressed. Finally, the LEDs are connected to receive a PWM
signal from the digital output pins of the Arduino and are wired in series with voltage-dividing
resistors. The octave buttons are simple switches so they provide a digital output to the Arduino
and require fewer wires.
 The handheld controller packs a lot of components into a smaller space, but the wiring is
fairly simple. A rocker switch connects a 9V battery to the Arduino Nano’s Vin port, and the
battery’s ground serves as the common ground for all of the components. The sensors receive
3.3V from the Nano since a 9V input would overload them. The sensors are all wired to the
Nano’s pins via a small proto-board, and the FSRs have additional voltage-regulating resistors as
well.
Refer to these schematics (made by Matthew Dacey) of the main pad and handheld controller’s
internal wirings.

 Matt also put together these charts of how each component connects to the
microcontrollers:

Main Pad (Arduino MEGA 2560)

COMPONENT PIN INPUT TYPE

SoftPot 1 A0 Analog

SoftPot 2 A1 Analog

SoftPot 3 A2 Analog

SoftPot 4 A3 Analog

Root Note Knob A11 Analog

Tuning Mode Knob A10 Analog

Volume Knob A9 Analog

Gravity well Knob A12 Analog

Octave (+) Button 22 Digital

Octave (-) Button 23 Digital

*Additionally, the Main Pad contains 4 output pins for the 4 LEDs used to indicate each “string”
being played. The output pins used are 2, 4, 5, and 6.

Handheld Controller (Arduino NANO ESP32)

COMPONENT PIN INPUT TYPE

FSR 1 A1 Analog

FSR 2 A0 Analog

FSR 3 A2 Analog

FSR 4 A3 Analog

Joystick X value A6 Analog

Joystick Y value A7 Analog

Joystick Button D12 Digital

Gyro SDA SDA (A4) Digital

Gyro SCL SCL (A5) Digital

Programming

Wireless Connectivity

 The wireless connection between the handheld controller and the main pad is made
possible by an Arduino Nano in the controller and an ESP32-S3 in the pad. They communicate
using the ESP_NOW protocol, which sends data from the Nano to the ESP32’s local wireless
network. The data Arduino Nano reads the inputs of the handheld controller’s sensors: the
joystick, FSRs, and accelerometer and formats them for use in Max. The joystick is
As stated earlier in the circuitry section, our instrument uses 3 separate microcontrollers to
facilitate the wireless communication between the controller and the main pad. For the joystick,
each direction of movement is used as an on/off toggle for 4 different settings, and pressing
down the joystick similarly toggles tapping mode. As a result, there is a function in the controller
that determines the current cardinal direction of the joystick and then changes the value stored in
a local variable for the corresponding setting (chorus, phaser, reverb, overdrive) from true to
false (1 or 2, we use 1 or 2 instead of 0 or 1 because that’s the convention in max) or vice versa.

The FSRs are simply scaled to 0-127, as are the pitch, yaw, and roll of the accelerometer. This
data is then sent via ESP-NOW to the ESP32, which is connected directly to one of the serial
ports of the main pad’s Arduino Mega. All the Mega has to do is take the incoming data and
append it to its printing line, so both the pad’s sensors and controller’s sensors are sent to Max at
the same time.

Arduino Code

 Our Arduino is coded via Arduino IDE to interpret the analog and digital signals of the
pad’s sensors into data formatted for Max. It takes raw data from the sensors every 10
milliseconds. It was initially every 50 milliseconds, but that caused some noticeable latency, and
we were luckily able to speed it up without evident drawbacks. Raw data from analog ports,
ranging from 0-1023, it reinterpreted into ranges used by Max: 0-1200 for the softpots, 0-127 for
the volume knob, 60-71 (analogous to MIDI notes C4-B4) for the root note knob, 1-5 (for the
five different tuning modes) of the tuning knob, and 0-50 for the auto-tuning knob. The octave
buttons required more complicated interpretations. The octave buttons increment an “octave”
variable up or down 1, with a range of -2 to 2. Pressing both octave buttons at once increments
the instrument switch variable between 1, 2, and 3. The Arduino Mega formats all this sensor
data, appends the data it receives from the ESP-32, and prints these output values in a single line,
each sensor or variable’s output separated by a space, every 10 milliseconds. Finally, the Mega is
also coded to light up four LEDs on the pad in proportion to how hard the FSRs on the handheld
are being pressed.

Max Patch
 The Max patch functions as a modular system that interprets each output of the Arduino
to send notes and control information to Reason.

Overall Max Patch:

The patcher has many sections and sub-patches, so we’ll start from the top left and move

down towards the bottom right. The function to admit and interpret the output of the Arduino, “p
serialunpack” was adapted from a YouTube video, “Arduino To Max/MSP (Tutorial)” by Sound
Simulator.

Top row of the overall max patch:

P serialunpack:

Once the initial toggle is turned on by the loadbang, the “p serialunpack” function

triggers an output from the serial port every 10 milliseconds, groups the incoming values, and
converts them to integers, resulting in a list of 20 values. The values are then sent out of 22 ports
to the 22 different number boxes in the main patch.

The first four inputs from Arduino are the current position of the finger on the linear
softpot, expressed from 0 (bottom) to 1200 (top). In the “p softpots” sub-patch, each softpot does
two things: sends a “fudged” pitch bend value to the corresponding channel in Reason, and,
when in tapping mode, triggers note-ons for that same channel. Each softpot is assigned its own
MIDI channel so each can have independent pitch bend values. The leftmost softpot, acting as

the “lowest string” of the lap steel is channel 1, 9, or 13, depending on the instrument switch
variable, while the rightmost “highest string” softpot is channel 4, 12, or 16..

P softpots:

P adjustablegravitywells:

The incoming 0-1200 value of each softpot is sent through a “p adjustablegravitywells”

function that fudges the pitch, making it easier to play in tune by increasing the “target” range of
inputs that result in the in-tune semitone outputs 0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 1100, and 1200. The size of the target zones for these numbers depends on the
“gravitystrength” variable, which is determined by the “Auto Tuning” knob, from 0 (no fudging)
to 50 (acting as a fretted instrument). The output of “p adjustablegravitywells” is sent through the
xbendout function to affect the pitch of the corresponding channel.

When in tapping mode, a change in the output of “p adjustablegravitywells” also triggers
a note to be played on the corresponding channel. Each channel is in monophonic legato mode,
so the continuous noteon commands do not sound individually. The pitch of the note is
determined by the tuning knobs and adjusted by the softpot’s pitch bend value, and its velocity is
always 127, so the note will sound regardless of the FSRs (as opposed to plucking mode).
Pressing down on the FSRs will still increase volume, as explained later.

One special case is the softpot input of 0. Since the softpot is wired using pull-down
resistors, its output defaults to 0 when it isn’t being touched. When a 0 is received while in
tapping mode, the “p softpots” module will trigger a noteoff command for all notes on the
channel. This function takes input from the Arduino’s output itself instead of from “p
adjustablegravitywells” because “p adjustablegravitywells” also interprets values 1-20 as 0, as
mentioned earlier. But input values of 1-20 would mean the softpot is being pressed, so this
function must be limited to only values of 0 from the Arduino. In theory, only a noteoff
command for the currently playing note should be necessary, but edge cases arose in testing and
we determined it was better to ensure all notes on the channel were off.

The next module to discuss is “p tuningknobs.” This function takes the octave buttons,
root note dial, and tuning mode dial as its inputs. The Arduino code has already manipulated the
sensor’s values, so the octave buttons combine to change a single integer between -2 and +2, the
root note dial has outputs 60-71, and the tuning mode knob has outputs 1-5.

P tuningknobs:

 This module interprets the three inputs to send variables “note1,” “note2,” “note3,” and
“note4,” which will become the pitch component of noteout commands in the “p softpots” and “p
fsrs” patchers. The root note, with a value of 60 (C3)-71 (B3) is added to the octave integer
multiplied by 12, becoming the bottommost note of the leftmost softpot (and the first channel).
So, an incoming root note value of 60 and an octave value of -1 would result in the leftmost
softpot’s lowest value being a C2 (48). As written, C2 should be the leftmost softpot’s middle
value, not the lowest, since a pitchbend value of 8192 would have no pitch bend and reproduce
the pitch determined by the MIDI note command. This is resolved in the Reason patch, where
each oscillator is tuned up by 6 semitones.

Based on the gate selected by the tuning mode knob, the other three channels have a root
note that relates in some way to the first channel’s root.

- In mode 1, labeled “Open” on the knob, the second channel is 4 half steps (major third)
above the first, the third channel is 7 half steps (perfect fifth) above the first, and the
fourth channel is 12 half steps (octave) above the first.

- In mode 2, labeled “6” on the knob, the second channel is 4 half steps (major third) above
the first, the third channel is 7 half steps (perfect fifth) above the first, and the fourth
channel is 9 half steps (major sixth) above the first.

- In mode 3, labeled “7” on the knob, the second channel is 4 half steps (major third) above
the first, the third channel is 7 half steps (perfect fifth) above the first, and the fourth
channel is 10 half steps (minor seventh) above the first.

- In mode 4, labeled “4ths” on the knob, the second channel is 5 half steps (perfect fourth)
above the first, the third channel is 10 half steps (minor seventh) above the first, and the
fourth channel is 15 half steps (minor tenth) above the first.

- In mode 5, labeled “5ths” on the knob, the second channel is 7 half steps (perfect fifth)
above the first, the third channel is 14 half steps (major ninth) above the first, and the
fourth channel is 21 half steps (major thirteenth) above the first.

 Auto Tuning:

 The Auto Tuning knob, as aforementioned, sends its output to “gravitystrength”,
impacting the “adjustablegravitywells” patcher.

 Next is the control module for the FSRs, taking the four FSR values 0-127 as its inputs.

P fsrs:

 Like “p softpots,” this module functions differently based on which mode it’s in. In both
modes, FSR values between 73 and 127 work an aftertouch volume control for each channel,
giving notes a little more volume by turning up Oscillator A Gain and Oscillator B Gain when
pressed hard. In plucking mode, the FSRs also control velocity for their own noteouts, triggering
a new one every time they are updated, so every 10 milliseconds. Again, the legato mode of the
Subtractor instruments, plus the fact that many of these noteon commands have a velocity of 0,
make the high density of noteon commands more reasonable. Additionally, when the FSR values
are under 50, they’ll also affect the attack speed of the synthesized sounds. Therefore, an FSR
value of 10 will result in a quiet note with a slow attack, while a value of 60 or above will result
in a louder note with an instantaneous attack.
 As “p fsrs” is the last of the subpatches, we can finally move on to the simpler parts of
the Max patch.

Second row of the overall Max patch:

The mode switch, toggled by clicking the joystick, switches between plucking mode and

tapping mode. It sends the mode variable out to “p softpots” and “p fsrs”, adjusts the target zone
size of the gravity wells as mentioned above, and ensures that the attack speed is instantaneous
when in tapping mode.

The next four toggle controls are activated by quickly flicking the joystick in four
cardinal directions. They control the Off/On/Bypass switch on four insert effects in the Reason
rack. Since the mixer’s audio is being sent through the four effects, they should never be in the
Off position, only On or Bypass, which allows input audio to pass through to the output
unaltered. Therefore, the default position of these four toggles is 2, meaning Bypass, and the
value will be switched to 1, turning the effect on when the joystick is flicked. A second flick will
turn it back to Bypass. These flicks are interpreted into toggled values of 1 and 2 in the Arduino
code.

The next three inputs are the pitch, yaw, and roll outputs of the accelerometer in the
handheld controller. Pitch determines the tremolo amount, yaw controls the tremolo rate, and roll
controls the filter frequency. While the tremolo amount defaults to zero in the resting position,
the tremolo rate and filter frequency default to 64.

Instrument switch:

The last input from the Arduino is the “instrument switch” variable, a number 1-3 that

increments when both octave buttons are pressed simultaneously. Through a gate, this variable
activates a set of channel numbers - 1-4, 9-12, or 13-16, which are then sent to the softpots and
fsrs’ noteout and midiout commands to switch which instrument is being played. A value of 1
corresponds to the lap steel instrument (Mälstrom) on MIDI channels 1-4, 2 is the cello sound
(NN-19) on channels 9-12, and 3 is the pad sound (Thor) on channels 13-16.

The final part of the Max patch is the “all notes off section.”
Bottom-left corner of the overall Max patch:

A “flush” command is sent whenever the octave switch or tuning knobs change and

whenever the Max patch as a whole is turned on or off via the topmost toggle button. This
function receives that flush and turns it into a series of 972 bangs that turn off every note from 36
(C2) to 117 (A7) on the twelve instrument channels. In testing, we encountered many problems
with hanging MIDI notes, so this was an effective way to ensure all notes were stopped.

Reason Rack

 The Reason rack takes the MIDI messages from Max and turns them into audio. The
Reason Rack consists of a Line Mixer 14x4, 4 insert effects: A Quartet Chorus Ensemble, PH-90
Phaser, Scream 4 Sound Destruction Unit, RV7000 MkII Reverb, four identical Malström
Graintable Synthesizers, four NN-19 Digital Samplers, and four Thor Polysonic Synthesizers.
The synthesizers each receive input on a set of four channels, each corresponding to a softpot
and FSR. Each of the 12 units outputs audio to a different channel on the 14x4 mixer as well.
The audio output from the mixer is then sent through the Quartet, PH-90, Scream 4, and
RV7000, and then to Reason’s audio output 1-2. These effects were originally used as sends
instead of inserts (meaning the instruments’ outputs would be mixed with various amounts of
each effect’s output), but we wanted the effects to be able to interact with each other, so they had
to be in sequence. The settings used on each effects module can be seen in the screenshot below.
Top of Reason rack:

The synthesizers, however, warrant a closer look. Each channel has a polyphony of 1 and

a legato trigger pattern, meaning that it can only play one note at a time (like a string), and once
it’s being played, the note won’t “strike” again until the note is turned off. Instead, additional

note-on commands will change the pitch of the note without restarting the Amp and Filter
envelopes.

In every synthesizer, the pitch bend wheel’s range is 6 semitones. This is very important
because it’s what defines the softpot’s range as one octave: 6 semitones down and 6 up from the
central note. By changing the pitch bend range, the function of the softpot would change
drastically. This iteration of the MIDI Slide is designed specifically for a range of one octave.

The velocity of note-ons, 127 in tapping mode and determined by the FSRs in plucking
mode, impacts the loudness of the two oscillators in the Mälstrom. Oscillator A is a loud,
consistent, sine wave, while B is a sawtooth wave, tuned an octave higher, that acts as the initial
“pluck” sound of the string. Oscillator B is also sent through Filter B, which attenuates the higher
frequencies so it blends more with Oscillator A. Oscillator B dies down quickly, while Oscillator
A has a longer decay and higher sustain level. As mentioned earlier, both are also tuned up 6
semitones, so that the MIDI pitch value they receive from Max will be heard as the bottom end
of the pitch bend range instead of the middle. Oscillator A moves through a passive Shaper that
doesn’t do anything to Filter A, which is controlled by the joystick’s accelerometer. The filter
envelope also doesn’t do anything. Modulator B is how the tremolo effect is created. Its amount
(via the mod wheel) and rate are both determined by the accelerometer.

Malström Graintable Synth. All four copies are identical:

The NN-19 sampler is used with a pre-loaded “Cello” sound, with minor tweaks to

Polyphony, Amplitude Envelope, and LFO settings.
NN-19 Digital Sampler. All four copies are identical:

The Thor Polysonic Synthesizer is loaded with an adjusted version of the “Alan Turing’s

Dream” patch. Settings were changed similarly to the NN-19 to map the modulation wheel to the
LFO, as well as the detune of the oscillators. The three oscillators, two with random detune and
one with an organ sound, are fed through filters, envelopes, and LFOs, and finally a delay
module, to create a unique spacey electronic sound.

Thor Polysonic Synthesizer. All four copies are identical:

Routing of Reason Rack:

Evaluations and Future Plans

 As presented on December 17th, 2024, our instrument worked very well. I’m glad we
were able to revisit and improve upon our instrument as our second project! I was pleasantly
surprised at how low latency we were able to get our wireless system, even though we couldn’t
figure out the Bluetooth. If we had more time to work on this in the future, I think we should
revisit the design of the pad to make it more ergonomic and have fewer sharp edges. It would
also be great if the pad could connect wirelessly to the computer as well, or process data (i.e. use
Max) internally and have a MIDI Out and USB Out instead of needing Max to run in a computer.
That setup would better emulate commercially available MIDI instruments, so it would be easier
for anyone with a passing knowledge to pick up and play.

